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Anisotropic cage evolution in quasi-two-dimensional colloidal fluids
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We experimentally explore the morphological evolution of cages in quasi-two-dimensional suspensions of
colloidal fluids, uncovering a complex dynamic restructuring in the fluid. Although cages display isotropic
evolution in the laboratory frame, we observe a striking anisotropy when analyzed in the displacement frame
of the caged particles. Moreover, our findings reveal that particles in specific but distinct regions of the cage
predominantly contribute to either its persistence or relaxation. Thus, our study provides a coarse-grained
microscopic picture of the structural relaxation of these fluids through cage evolution, which has broader
implications for the flow and phase behavior of complex fluids in confined geometry.
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Cage formation, whether transient or long-lived, is a
fundamental feature of condensed matter systems such as
(supercooled) liquids & glasses [1–5] and crystals [6,7].
Microscopic insights into the structural configuration and
dynamical evolution of cages have offered crucial under-
standings of diverse phenomena, such as the rheological [8]
and mechanical properties [4] of the materials, as well as
about dynamical phases of a system [9,10]. For example, the
distinct nature of glass transition and prediction of crystal
melting in two dimensions (2D) compared to three dimen-
sions (3D), becomes dimension-agnostic when the dynamics
of particles relative to their respective cages, rather than their
self-dynamics, are considered [11–15]. This is because long-
wavelength Mermin-Wagner fluctuations, which influence the
dynamics in 2D systems, are believed to be accounted for in
the cage-relative perspective [11–14].

Interestingly, recent studies suggest that long-wavelength
Mermin-Wagner fluctuations are also present in 2D colloidal
liquids and lead to the violation of the ubiquitous Stokes-
Einstein relation, which connects the microscopic diffusivity
of the tracers and the bulk viscosity of the liquid [16].
Once again, the cage-relative dynamics of the particles have
been shown to restore the usual behavior of the Stokes-
Einstein relation for 2D liquids [16]. However, despite the
extensive exploration of cage-relative dynamics, the evolution
of the cages themselves in 2D colloidal fluids−their tran-
sient nature leading to possible changes in their shape over
time, which consequently dictates the structural relaxation
of the fluid−has never been explored. It is particularly in-
triguing as long-wavelength fluctuations have been alluded
to stem from hydrodynamic interactions [16,17], which are
direction-dependent in the body frame of particle-pair for
quasi-two-dimensional (q2D) colloidal fluids [18]. Thus, the
coarse-grained depiction of fluid dynamics at the lengthscale
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of the cages can elucidate the structural relaxation of fluids in
confined geometries by examining the dynamic restructuring
of cages under emergent hydrodynamic interactions.

In this letter, we employ video microscopy to experi-
mentally investigate the spatiotemporal evolution of particles
forming the cages in quasi-two-dimensional (q2D) colloidal
fluids, both in the laboratory and in the displacement frame of
the reference caged-colloid. As expected, the fraction of parti-
cles that remain part of the reference caged-particle, defined at
the initial time t0 decreases exponentially over time, facilitat-
ing the structural relaxation of the fluid. Notably, the observed
size of cages over the cage-relaxation timescales suggests that
their morphological evolution is strongly influenced by near-
field hydrodynamic interactions in q2D confinement (Fig. 1)
[18]. As a result, while the mean shape of the cages appears
to evolve isotropically in the laboratory frame of reference,
their evolution is anisotropic and asymmetric in the displace-
ment frame of the reference caged-particle (Fig. 2). Finally,
consistent with hydrodynamic motional modes, we identify
distinct hotspots within the initial cage structure, where par-
ticles either contribute to cage persistence or facilitate cage
relaxation, thereby unraveling the crucial role of cages in the
structural relaxation of the fluid (Fig. 3).

Aqueous suspension of charge-stabilized polystyrene col-
loidal particles, diameter: σ = 1.04 µm, polydispersity ∼3%,
were loaded in a wedge-shaped cell, which was then allowed
to stand vertically for particles to sediment under gravity and
form a monolayer in the quasi-two-dimensional region of the
cell [18]. Once a desired area fraction was achieved, the cell
was equilibrated for several hours under the microscope. After
equilibration, video microscopy was performed for 20 min-
utes using 100x oil objective (1.4 numerical aperture) at 10
frames per second (fps) using the Hamamatsu ORCA-Flash
4.0 camera. We have captured data in the liquid regime at
five area fractions φ in the range 0.15 � φ � 0.35, in the
same region of the cell [19]. The trajectory of each particle
was determined using standard image processing and tracking
algorithms [20]. The dynamic spatial resolution in our exper-
iments was 20 nm.
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The identity of cage particles C(i, t ) for ith particle at a time
t is determined using Voronoi tessellation, which partitions
the 2D space into neighborhoods (cells) around each particle
such that every point within a cell is closer to the particle
than to any other particle [Fig. 1(a)] [21]. In other words,
the cage particles constitute the nearest-neighbor envelope
as determined by Voronoi tessellation. The order of C(i, t ),
n(C(i, t )), represents the number of particles forming the cage
of the ith particle that is also equal to the number of vertices in
its Voronoi cell. With time, the identity of particles contained
in C(i, t ) changes, leading to the relaxation of the cage and,
consequently, the structural relaxation of the fluid.

The relaxation (or persistence) time of the cage is
measured by calculating the ensemble-averaged fraction of
common cage particles 〈 f (�t )〉 with lag time �t , 〈 f (�t )〉 =
1
N

〈 ∑N
i

n(C(i,t0 )∩C(i,t0+�t ))
n(C(i,t0 ))

〉
t0

. Here, 〈·〉t0 represents initial time

averaging over t0, corresponding to a given �t , and N is
the total number of particles. 〈 f (�t )〉 exhibits a stretched-
exponential decay and yields the persistence (or relaxation)
time of the cage, τcage [Fig. 1(b)]. For the range of φ studied,
τcage ∼ 10 s and, surprisingly, does not seem to change with
φ. This suggests that for the range of φ studied in this work,
the coarse-grained structural relaxation of the fluid over the
lengthscales of the cages, typically associated with their bulk
relaxation, may be density-independent.

Next, to probe the spatial extent or lengthscales associated
with cage relaxation, we have measured the radius of
gyration Rg of the cages at �t = τcage. Rg(i,�t ), measured
from the positions of particles at t0 + �t , which forms
the cage of ith particle at t0, is defined as Rg(i,�t ) =√

1
n(C(i,t0 ))

∑
c j∈C(i,t0 )

(r j (t0 + �t ) − 〈r j (t0 + �t )〉 j )
2. Here,

r j (t0 + �t ) is the position of the jth particle belonging
to the set of particles that form the cage of ith particle at
t0. Note, throughout the letter, the sets and their elements
are represented using uppercase and lowercase alphabets,
respectively. The distribution of Rg, P(Rg), shows a Gaussian
profile and yields the average radius of gyration of cages
〈Rg〉 [inset to Fig. 1(c)]. As expected, 〈Rg〉 decreases
with increasing φ [Fig. 1(c)]. More importantly, the
average cage size over the τcage turns out to be ∼ 2 − 3σ

[Fig. 1(c)], implying that the temporal evolution of cages
should be strongly governed by the nature of near-field
hydrodynamic interactions in q2D spatial confinement, which
is direction-dependent (anisotropic) in the body frame of
colloid-pairs [18].

To directly demonstrate that hydrodynamics is crucial in
the evolution of the cages, we investigate how the motion
of the reference caged-particle influences the motion of its
surrounding neighbors. In other words, we measure the two-
particle hydrodynamic displacement correlations HL,T

cage(�t )
between the reference caged-particle and its surrounding
nearest-neighbors forming the cage, along longitudinal
(L) and transverse (T ) directions, defined by HL,T

cage(�t ) =〈
1
N

N∑
i

(
1

n(C(i,t0 ))

∑
c j∈C(i,t0 )

�rL,T
i (�t ) · �rL,T

j (�t )
)〉

t0

. The L

and T directions are defined in the body frame of the pair of
particles, always composed of the reference caged-particle
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FIG. 1. Cage characterization in quasi-two-dimensional col-
loidal fluids. (a) Rendering of the Voronoi cells (polygons) for a
representative subset of particles (spheres) in the experimental field
of view at initial, t0 (left), and later time, t0 + �t (right) at φ = 0.35,
with �t = 2.5 s. The representative reference caged-particle’s (red
sphere) Voronoi cell with its adjoining cells at t0 (cyan polygons)
and t0 + �t (green polygons), determines the identity of the particles
forming the cage (shown as numerals on the spheres). (b) Average
fraction of common cage particles 〈 f (�t )〉 versus lag time �t for
area fractions, φ = 0.20 (blue circles) and φ = 0.35 (red squares).
(c) The average radius of gyration of the cages 〈Rg〉 in the units of
σ versus φ for �t = τcage with the solid line as a guide to the eye.
The standard error of mean of 〈Rg〉 is less than the symbol size. Inset
shows the probability distribution of Rg, P(Rg), for φ = 0.20, and
�t = τcage, with the red curve being a Gaussian fit to the data.

and any particle forming its cage, such that L is along the line
joining the pair at t0, while T is perpendicular to it. �rL,T

i (�t )
is the displacement of the ith particle along the L or T over
�t , and 〈·〉 denote an average over all t0. Reminiscent with
the direction-dependent (anisotropic) nature of hydrodynamic
interactions in quasi-2D colloidal fluids [18], we find that
for all the �t � τcage, HL

cage(�t ) > 0 and HT
cage(�t ) < 0

(Table S1 of the Supplemental Material (SM)) [22]). Thus,
the temporal evolution of the cages is strongly influenced by
near-field hydrodynamics, which may lead to a distinctive
evolution of cages and consequently dictate the dynamic
restructuring of the fluid.

As the fluid relaxes, particles of the cage, as defined at t0,
will diffuse and may lead to a change in the shape of the cage.
Thus, to capture the microscopic evolution in the shape of the
cages with �t , we plot the probability distribution of the posi-
tions of the particles of the cage, P(r j (t0 + �t )|c j ∈ C(i, t0)),
defined at t0, over �t [Figs. 2(a)–2(e)]. Here, the argument
on the right of the “|” represents the condition applied for
the quantity being measured on the left. Note that the prob-
abilities are calculated from the ensembles of particles (and
their cages) and, for a given �t , averaged over t0. Particles
forming the cage spread radially, both outward and inward,
from their initial position, with P(r j (t0 + �t )|c j ∈ C(i, t0))
being symmetric about the center of mass of the cages at t0.
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FIG. 2. Cage evolution in quasi-two-dimensional colloidal flu-
ids. (a) Rendering from experiments illustrating the laboratory and
displacement frames of reference. Vector joining the reference
caged-particle with a representative particle that forms the cage r j

at every instant is shown in black arrow. The displacement vector
of the caged-particle �ri(�t ) is shown in yellow arrow. The right
panel demonstrates the transformation of particle coordinates to the
displacement frame, where the displacement of the reference-caged
particle (red) is aligned with the x –axis. Ensemble-averaged col-
ormap, (b)–(e) P(r j (t0 + �t )|c j ∈ C(i, t0 )) in the laboratory frame,
and (f)–(i) P(rdisp

j (t0 + �t )|c j ∈ C(i, t0 )) in the displacement frame,
for two distinct φ and �t . White cross and red solid circle in (b)–(i)
represent the mean of the probability distribution at t0 and t0 + �t ,
respectively. Cyan plus symbol in (f)–(i) represents the mean position
of the reference caged-particle in the displacement frame. Yellow
arrows in (f)–(i) show the displacement direction of the reference
caged-particle. (j) Total probability within an annular region with
1.00σ � r � 1.25σ and centered on the mean of the probability
distribution, as a function of angle θ [as illustrated in (e)] and �t for
φ = 0.35, in the displacement frame and laboratory frame (inset).
(k) Aspect ratio α of the fitted ellipse along the maxima of the
probability distribution as a function of �t for two distinct φ in the
laboratory (open symbols) and displacement frames (solid symbols).
Data points and their respective error in (k) represent the mean and
standard error of α, calculated from four statistically independent
time segments of 250 s, out of ∼103 s of total experimental time
duration.

The diffused annular ring signifies the caging of the particle
by its neighbors in colloidal fluids [Figs. 2(b)–2(e)] and, as
expected, the annular ring spreads with �t . For a given �t ,
with an increase in φ, as caging effects strengthen, the annular
ring becomes more localized, as seen in Figs. 2(b)–2(e) and
Video 1 of the SM [22].

P(r j (t0 + �t )|c j ∈ C(i, t0)) is found to be symmetric.
However, note that the laboratory frame of measurements of
the positions of particles forming the cage for the analysis
of P(r j (t0 + �t )|c j ∈ C(i, t0)) will be unable to capture any
possible influence of the unique nature of hydrodynamic in-
teractions in q2D colloidal fluids on the dynamic restructuring
of the cages. Hence, to discern the effects of hydrodynam-
ics on the evolution of the shape of the cages, we calculate
P(rdisp

j (t0 + �t )|c j ∈ C(i, t0)) in the displacement frame of
the ith reference caged-particle. Here, we rotate the positions
of all the particles of the cages such that the displacement of
reference-caged particle aligns along the x –axis [Fig. 2(a)].
In essence, we transform ri in the laboratory frame to rdisp

i in
displacement frame by rdisp

i = R(−ψ )ri, where ψ is the angle
that the displacement of the reference caged-particle subtends
with x –axis and R(−ψ ) is the rotation matrix with elements
Rlm(ψ ) = cos(ψ )δlm + sin(ψ )δlm.

Interestingly, unlike P(r j (t0 + �t )|c j ∈ C(i, t0)), P(rdisp
j

(t0 + �t )|c j ∈ C(i, t0)) deviates from the symmetric annular
shape and is no longer isotropic with probability densities be-
ing different in distinct regions [Figs. 2(f)–2(i) and Video 1 of
the SM [22]]. To quantify this localization of the probabilities,
we calculate the net probability within an annular region with
an inner and outer radius of 1.00σ and 1.25σ , and centered
on the mean of the probability distribution, as a function of
angle θ [for example, see Fig. 2(e)]. For a fixed φ, while
the net probability is constant for all θ for P(r j (t0 + �t )|c j ∈
C(i, t0)) [inset to Fig. 2(j)], however, it displays two maxima at
θ ∼ ±90 for P(rdisp

j (t0 + �t )|c j ∈ C(i, t0)) [Fig. 2(j)]. It indi-
cates an accumulation of particles forming the cage in regions
perpendicular to the motion of the caged-particle, which is in
concordance with the dipolar nature of hydrodynamics in q2D
colloidal fluid.

To further quantify the anisotropy in P(rdisp
j (t0 + �t )|c j ∈

C(i, t0)), we fit an ellipse along the maxima of the prob-
ability distribution [23]. We define the aspect ratio of the
fitted ellipsoid α, the ratio of the major to the minor axis,
as the anisotropy parameter associated with the probability
distribution. In the laboratory frame, irrespective of the φ and
�t , α remains closer to unity, suggesting the isotropic spread
of the particles of the cages around the reference caged-
particle [Fig. 2(k)]. However, intriguingly, in the displacement
frame, as already visually inferred from the colormaps in
Figs. 2(f)–2(i), the shape anisotropy parameter α increases
with �t . The angle-dependent localization of P(rdisp

j (t0 +
�t )|c j ∈ C(i, t0)) [Fig. 2(j)] and its time-dependent elonga-
tion [Fig. 2(k)] thus suggests a strong role of hydrodynamics
in governing the evolution of cages, potentially dictating the
dynamics of cage breaking (and persistence).

Finally, having established that the shape of the cage is
anisotropic in the displacement frame of the reference caged-
particle, we now delve into how the particles of the cage
rearrange, which either leads to the persistence of the cage or
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its breaking and local structural relaxation of the fluid [24,25].
In other words, are there any specific regions in the cage
that predominantly help with cage relaxation and persistence?
Note, for a reference caged-particle, say ith particle, and its
cage particles C(i, t0), defined at time t0, a subset of these
particles K (i, t0,�t ) will remain part of the cage C(i, t0 + �t )
at later time t0 + �t . This common subset, K (i, t0,�t ) =
C(i, t0) ∩ C(i, t0 + �t ), contributes to cage persistence, while
particles that were part of C(i, t0) but are not included
in C(i, t0 + �t ), denoted as 
(i, t0,�t ) = C(i, t0) \ C(i, t0 +
�t ), contribute to cage breaking [Fig. 3(a)]. Here, “\” denotes
the set difference. As expected, the set of particles that re-
main part of the cage, k j ∈ K (i, t0,�t ), exhibit lower mean
squared displacements, 〈�r2(�t )〉 = 〈 1

N

∑N
j (r j (t0 + �t ) −

r j (t0))2〉t0 , than those that leave the cage, λ j ∈ 
(i, t0,�t )
(Fig. S1 of the SM [22]).

Thus, to investigate if particles in certain spatial regions
of the cage are more likely to contribute to cage persistence,
we analyze P(rdisp

j (t0)|k j ∈ K (i, t0,�t )) and P(rdisp
j (t0 +

�t )|k j ∈ K (i, t0,�t )). We find that at t0, particles that are
located in the direction of the displacement of the reference
caged-particle have a higher likelihood of remaining part of
the cage of the same particle at t0 + �t [Fig. 3(b) and Video
2 of the SM [22]]. At t0 + �t , however, the common particles
of the cage at t0 and t0 + �t are more likely to be found in the
transverse direction of the reference caged-particle [Fig. 3(c)
and Video 2 of the SM [22]].

To further corroborate these arguments, we have only
considered a subset of K (i, t0,�t ) such that they lie within
an angular region of ±15◦ with respect to the direction of
displacement of the reference caged-particle. Figures 3(d)
and 3(e) clearly show that common cage particles rearrange
in a distinctive “mushroom cloud” pattern, rearranging their
positions vertically and moving opposite to the direction of
the reference caged-particle’s displacement. Conversely, the
uncommon particles of the cage, initially distributed opposite
to the displacement direction at t0, become more diffused at
t0 + �t [Figs. 3(f) and 3(g) and Video 2 of the SM [22]].
This indicates that cage breaking and structural relaxation are
predominantly facilitated by particles of the cage that are in
the regions opposite to the reference caged-particle’s motion.

In summary, our experiments represent a first-of-its-kind
unraveling of the coarse-grained microscopic dynamics of
rigidly confined colloidal fluids, focusing on the dynamic
restructuring of particle cages. We demonstrate that, in the
laboratory frame of reference, cages evolve isotropically and
symmetrically. However, in the displacement frame associated
with the motion of the reference caged-particle, the evolu-
tion dynamics of the cages are markedly different, becoming
anisotropic and asymmetric. Particles that initially form the
cage and are positioned ahead of the reference particle reorga-
nize and diffuse transversely to the displacement direction of
the caged-particle, while still remaining a part of the cage at a
later time, thereby contributing to the persistence of the cage.
Conversely, particles behind the reference caged-particle tend
to diffuse further away, primarily leading to cage breaking and
facilitating the structural relaxation of the fluid.

Intriguingly, our findings show that the cage relaxation
timescales, determined solely by the persistence of the
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FIG. 3. Distinct anisotropic spatial probability distribution of the
cage particles leading to cage persistence and relaxation. (a) Ren-
dering from the experiments of a portion of the field of view,
transformed to its respective displacement frame, illustrating the
classification of cage particles (cyan spheres) at time t0 into com-
mon K (i, t0, �t ) and uncommon 
(i, t0, �t ) subsets based on their
presence or absence in the cage defined for the same reference parti-
cle (red sphere) a later time t0 + �t . The common and uncommon
cage particles are circled in purple and blue, respectively. Col-
ormap, (b) P(rdisp

j (t0)|k j ∈ K (i, t0, �t )) and (c) P(rdisp
j (t0 + �t )|k j ∈

K (i, t0, �t )), at t0 and t0 + �t , respectively, for φ = 0.35 and �t =
2.5 s. (d) and (e) are the same as (b) and (c), respectively, but
considering only the subset of particles within an angular region of
±15◦ with respect to the direction of displacement of the reference-
caged particle. (f) and (g) depict the same as (b) and (c) but for
the uncommon cage particles, 
(i, t0, �t ). Solid red circles in (b)–
(g) represent the mean of the probability distributions. White cross
and cyan plus symbols in (b)–(g) show the mean position of the
particles forming the cage at t0, and the mean position of the ref-
erence caged-particle (either at t0 or t0 + �t), respectively. Yellow
arrows in (b)–(g) depict the displacement direction of the reference
caged-particle.
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fraction of cage particles over time, remains independent of
the packing area fractions examined in this study. However,
even a coarse-grained depiction of liquid should exhibit a
slowing down of dynamics with increasing φ. In fact, for
φ � 0.58, the cage relaxation timescales are observed to be
longer than those observed for φ � 0.35 (Fig. S2 of the SM
[22]). In light of this, it would be valuable to investigate
whether this indicates a potential dynamic phase transition
within the liquid regime. Additionally, considering contrast-
ing strengths, which is φ−dependent, and the phase difference
between different hydrodynamic motional modes in q2D
[18], this suggests the possibility of different mechanisms of
structural relaxation at different φ for rigidly confined col-
loidal fluids. While our study focused on cage dynamics in
q2D rigid confinement, it would be worthwhile to explore
the coarse-grained dynamics at the lengthscales of cages in
suspensions of particles at interfaces [11,26] and those con-
fined on curved surfaces [27,28]. Future studies could also

investigate systems with broken ergodicity, such as jammed
or glassy states [29–31], as well as active matter, which
may exhibit non-trivial cage relaxation dynamics [32]. More-
over, exploring systems with soft and anisotropic particles
could provide further insights, as these introduce ruggedness
into the energy landscapes, even in two-dimensional contexts
[33–35].
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